

Upper Hudson River PCB Modeling System Overview

Presented by Jennifer Benaman

Presented to LimnoTech, Ann Arbor, MI

July 14, 2010

Introductions

- Jennifer Benaman Overall Project Manager
 - Glens Falls Office
- Li Zheng Hydro/Sedtran Project Manager
 - Montvale Office
- Peter Israelsson FandT Project Manager
 - Cambridge Office
- Beth Lamoureux Bioaccumulation Project Manager
 - Montvale Office
- Pete Oates Sr. Engineer on FandT modeling
 - Montvale Office
- Raghav Narayanan Engineer on Bioaccumulation modeling
 - Montvale Office

Goals for this Week

- Foster communication between the two consulting firms and establish key technical contacts
- Provide EPA's consultants with an understanding of the Upper Hudson River Model structure, development, and calibration
- Ensure that EPA's consultants can successfully execute all four models for calibration
- Lay the groundwork for understanding how to execute long-term simulations
- Encourage feedback from EPA's consultants on AQ's modeling approach, calibration, etc.

Introduction to UHR Modeling System

- Overview of modeling system
- Advances in UHR modeling
- Model domain and available data sets
- Model grid
- Model structure, development, and calibration

1999 Model of the Upper Hudson River

- Modeled Tri+ PCB
- Hydro/sedtran, fate and transport, bioaccumulation
- Simulated 1977 1999
 - Later updated to simulate through 2000
- Used to assess remedial alternatives
- Peer reviewed

Objectives of Model Update

- Develop an enhanced model
 - Use vast data base compiled since original model development
 - Use advances in computational capability to better represent site conditions
- Provide a tool to evaluate impacts of the dredging program
- Provide a tool to potentially aid in operational and design decisions for Phase 2 design and implementation

How Can We Use This Model?

- Investigate potential causes for issues during Phase 1 dredging
- Estimate impact of Phase 1 on rate of recovery of the river
- Evaluate benefits of alternative Phase 2 remediation
- Evaluate certain operational and/or design decisions in relation to resuspension and PCB water column and fish concentrations

Details About the Model

- Modeling two types of PCBs
 - Mono + Di homologs
 - Tri+ homologs (same as 1999 model)
- Calibrate PCB fate model using SSAP data as sediment initial conditions
 - Simulate from 2004 to 2008; compare predicted and observed water column PCB data and ability to replicate slow long-term decline
- Hydrodynamic, sediment transport, and PCB fate and transport models are closely coupled within EFDC model code

Model Framework

Conceptual Model of PCB Dynamics

Advances in UHR Modeling

- Incorporates an extensive dataset collected for remedial design
- Grid consistency
 - Hydrodynamics, sediment transport, PCB fate and transport models all utilize the same grid
- Sediment transport
 - 4 sediment size classes
 - More realistic representation of bed armoring
- PCB fate and transport
 - Simulates Di- and Tri+ as aggregate groups
- Bioaccumulation
 - Food webs leading to 4 fish species

Upper Hudson River Model Domain and Available Data Sets

- Fort Edward, NY to Troy, NY
 - 40 miles
 - 8 Reaches separated by dams
- Data sets
 - Bathymetric surveys
 - Flow, stage heights, acoustic doppler current profiler survey
 - Sediment sampling and analysis program
 - Baseline monitoring programs (water and fish)

See full list in <u>Table 2-1</u> of the UHR Modeling Systems Report (Anchor QEA 2010)

Model Reaches

Summary of Geometry for Hudson River Reaches 1 through 8

Reach	Upstream Boundary	Downstream Boundary	Length (miles)	Average Width (ft)
8	River Mile 195	Thompson Island Dam	6.8	730
7	Thompson Island Dam	Fort Miller Dam	2.2	930
6	Fort Miller Dam	Northumberland Dam	2.8	750
5	Northumberland Dam	Stillwater Dam	15.3	680
4	Stillwater Dam	Lock #3	2.3	1260
3	Lock #3	Lock #2	2.6	1090
2	Lock #2	Lock #1	4.1	900
1	Lock #1	Troy Dam	5.9	940

Model Grid

Top Portion of Reach 8

See complete grids in Figures 4-1 to 4-14 in the UHR Modeling System Report (Anchor QEA 2010)

Model Cells per Reach

Reach	Number of Longitudinal Cells	Number of Lateral Cells	Average Cell Length (ft)	Average Cell Width (ft)	Typical Cell Aspect Ratio
8	230	22	160	33	5
7	51	22	240	42	6
6	130	22	110	34	3
5	260	22	310	31	10
4	40	22	300	57	5
3	50	22	280	49	6
2	105	22	200	41	5
1	150	22	210	43	5

General Calibration Approach

- Hydrodynamic model
 - Reproduce observed flows, depths and velocities
- Sediment transport model
 - Reproduce observed TSS conc., solids mass balances, flood scour and long-term deposition patterns
- PCB fate and transport model
 - Reproduce observed PCB conc. in water column
 - Reproduce sediment recovery rate in cohesive and non-cohesive sediments